Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics
نویسندگان
چکیده
MOTIVATION Regulation of gene expression is fundamental to the operation of a cell. Revealing the structure and dynamics of a gene regulatory network (GRN) is of great interest and represents a considerably challenging computational problem. The GRN estimation problem is complicated by the fact that the number of gene expression measurements is typically extremely small when compared with the dimension of the biological system. Further, because the gene regulation process is intrinsically complex, commonly used parametric models can provide too simple description of the underlying phenomena and, thus, can be unreliable. In this article, we propose a novel methodology for the inference of GRNs from time-series and steady-state gene expression measurements. The presented framework is based on the use of Bayesian analysis with ordinary differential equations (ODEs) and non-parametric Gaussian process modeling for the transcriptional-level regulation. RESULTS The performance of the proposed structure inference method is evaluated using a recently published in vivo dataset. By comparing the obtained results with those of existing ODE- and Bayesian-based inference methods we demonstrate that the proposed method provides more accurate network structure learning. The predictive capabilities of the method are examined by splitting the dataset into a training set and a test set and by predicting the test set based on the training set. AVAILABILITY A MATLAB implementation of the method will be available from http://www.cs.tut.fi/~aijo2/gp upon publication.
منابع مشابه
H∞ Sampled-Data Controller Design for Stochastic Genetic Regulatory Networks
Artificially regulating gene expression is an important step in developing new treatment for system-level disease such as cancer. In this paper, we propose a method to regulate gene expression based on sampled-data measurements of gene products concentrations. Inherent noisy behaviour of Gene regulatory networks are modeled with stochastic nonlinear differential equation. To synthesize feed...
متن کاملNetwork-based transcriptome analysis in salt tolerant and salt sensitive maize (Zea mays L.) genotypes
Identification of genes involved in salinity stress tolerance provides deeper insight into molecular mechanisms underlying salinity tolerance in maize. The present study was conducted in the faculty of agriculture of Urmia university, Iran, in 2018, with the aim of identifying genetic differences between two maize genotypes in tolerance to salinity stress, and the results of gene expression wer...
متن کاملHow to infer gene networks from expression profiles, revisited.
Inferring the topology of a gene-regulatory network (GRN) from genome-scale time-series measurements of transcriptional change has proved useful for disentangling complex biological processes. To address the challenges associated with this inference, a number of competing approaches have previously been used, including examples from information theory, Bayesian and dynamic Bayesian networks (DB...
متن کاملExploring Gene Signatures in Different Molecular Subtypes of Gastric Cancer (MSS/ TP53+, MSS/TP53-): A Network-based and Machine Learning Approach
Gastric cancer (GC) is one of the leading causes of cancer mortality, worldwide. Molecular understanding of GC’s different subtypes is still dismal and it is necessary to develop new subtype-specific diagnostic and therapeutic approaches. Therefore developing comprehensive research in this area is demanding to have a deeper insight into molecular processes, underlying these subtypes. In this st...
متن کاملGene Expression Profile Analysis during Mouse Tooth Development
Introduction: Complex molecular pathways involve in development of different tissues such as teeth. Differential gene expression patterns during teeth development generates different tooth types. Teeth development results from interactions between oral epithelium and underlying ectomesenchyme cells with neural crest origin. Teeth development are regulated by different signaling networks. In thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 25 22 شماره
صفحات -
تاریخ انتشار 2009